首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   205篇
  免费   11篇
  国内免费   4篇
测绘学   4篇
大气科学   17篇
地球物理   41篇
地质学   108篇
海洋学   15篇
天文学   27篇
自然地理   8篇
  2020年   4篇
  2019年   2篇
  2018年   4篇
  2017年   8篇
  2016年   7篇
  2015年   5篇
  2014年   5篇
  2013年   14篇
  2012年   19篇
  2011年   8篇
  2010年   10篇
  2009年   10篇
  2008年   10篇
  2007年   2篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   11篇
  2002年   12篇
  2001年   10篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   4篇
  1995年   4篇
  1994年   4篇
  1993年   5篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   4篇
  1982年   4篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1973年   2篇
  1970年   1篇
  1902年   1篇
排序方式: 共有220条查询结果,搜索用时 15 毫秒
91.
Although much effort has been put into attempts to unravel the Mesozoic ophiuroid fossil record, surprisingly little attention has been paid to the geological history of family-level compositions of brittle star assemblages. Here, we describe new ophiuroid material from the Late Oxfordian Bure Member as exposed in a construction site along the federal Highway A16 (Transjurane Highway) near Boncourt–Queue au Loup (Swiss Jura Mountains). The remains are exceptionally well preserved and partially articulated, enabling detailed morphological observations at a level comparable to Recent material. Three species are identified; they are here shown to display unequivocal affinities with extant ophiuroid lineages. The assemblage comprises a new ophiacanthid genus and species, Juracantha hottingeri, which is closely related to extant Ophientrema, an ophiolepidid close to extant Ophiozonella described here as a new genus and species, Eozonella bergeri, and a species previously described as Ophiacantha? francojurassica, which is here reassigned to the extant ophionereidid genus Ophiodoris. The assemblage was found in association with Nanogyra oyster buildups encrusted by serpulids and associated with partially-articulated crinoids, deposited in a shallow subtidal setting. Its family level composition is highly unusual with respect to modern equivalents, and instead is reminiscent of modern bathyal assemblages.  相似文献   
92.
MarcoPolo-R near earth asteroid sample return mission   总被引:3,自引:0,他引:3  
MarcoPolo-R is a sample return mission to a primitive Near-Earth Asteroid (NEA) proposed in collaboration with NASA. It will rendezvous with a primitive NEA, scientifically characterize it at multiple scales, and return a unique sample to Earth unaltered by the atmospheric entry process or terrestrial weathering. MarcoPolo-R will return bulk samples (up to 2?kg) from an organic-rich binary asteroid to Earth for laboratory analyses, allowing us to: explore the origin of planetary materials and initial stages of habitable planet formation; identify and characterize the organics and volatiles in a primitive asteroid; understand the unique geomorphology, dynamics and evolution of a binary NEA. This project is based on the previous Marco Polo mission study, which was selected for the Assessment Phase of the first round of Cosmic Vision. Its scientific rationale was highly ranked by ESA committees and it was not selected only because the estimated cost was higher than the allotted amount for an M class mission. The cost of MarcoPolo-R will be reduced to within the ESA medium mission budget by collaboration with APL (John Hopkins University) and JPL in the NASA program for coordination with ESA’s Cosmic Vision Call. The baseline target is a binary asteroid (175706) 1996 FG3, which offers a very efficient operational and technical mission profile. A binary target also provides enhanced science return. The choice of this target will allow new investigations to be performed more easily than at a single object, and also enables investigations of the fascinating geology and geophysics of asteroids that are impossible at a single object. Several launch windows have been identified in the time-span 2020–2024. A number of other possible primitive single targets of high scientific interest have been identified covering a wide range of possible launch dates. The baseline mission scenario of MarcoPolo-R to 1996 FG3 is as follows: a single primary spacecraft provided by ESA, carrying the Earth Re-entry Capsule, sample acquisition and transfer system provided by NASA, will be launched by a Soyuz-Fregat rocket from Kourou into GTO and using two space segment stages. Two similar missions with two launch windows, in 2021 and 2022 and for both sample return in 2029 (with mission duration of 7 and 8?years), have been defined. Earlier or later launches, in 2020 or 2024, also offer good opportunities. All manoeuvres are carried out by a chemical propulsion system. MarcoPolo-R takes advantage of three industrial studies completed as part of the previous Marco Polo mission (see ESA/SRE (2009)3, Marco Polo Yellow Book) and of the expertise of the consortium led by Dr. A.F. Cheng (PI of the NASA NEAR Shoemaker mission) of the JHU-APL, including JPL, NASA ARC, NASA LaRC, and MIT.  相似文献   
93.
The European Venus Explorer (EVE) mission described in this paper was proposed in December 2010 to ESA as an ‘M-class’ mission under the Cosmic Vision programme. It consists of a single balloon platform floating in the middle of the main convective cloud layer of Venus at an altitude of 55?km, where temperatures and pressures are benign (~25°C and ~0.5 bar). The balloon float lifetime would be at least 10 Earth days, long enough to guarantee at least one full circumnavigation of the planet. This offers an ideal platform for the two main science goals of the mission: study of the current climate through detailed characterization of cloud-level atmosphere, and investigation of the formation and evolution of Venus, through careful measurement of noble gas isotopic abundances. These investigations would provide key data for comparative planetology of terrestrial planets in our solar system and beyond.  相似文献   
94.
95.
The isotopic compositions of terrestrial hydrogen and nitrogen are clearly different from those of the nebular gas from which the solar system formed, and also differ from most of cometary values. Terrestrial N and H isotopic compositions are in the range of values characterizing primitive meteorites, which suggests that water, nitrogen, and other volatile elements on Earth originated from a cosmochemical reservoir that also sourced the parent bodies of primitive meteorites. Remnants of the proto-solar nebula (PSN) are still present in the mantle, presumably signing the sequestration of PSN gas at an early stage of planetary growth. The contribution of cometary volatiles appears limited to a few percents at most of the total volatile inventory of the Earth. The isotope signatures of H, N, Ne and Ar can be explained by mixing between two end-members of solar and chondritic compositions, respectively, and do not require isotopic fractionation during hydrodynamic escape of an early atmosphere.The terrestrial inventory of 40Ar (produced by the decay of 40K throughout the Earth's history) suggests that a significant fraction of radiogenic argon may be still trapped in the silicate Earth. By normalizing other volatile element abundances to this isotope, it is proposed that the Earth is not as volatile-poor as previously thought. Our planet may indeed contain up to ~ 3000 ppm water (preferred range: 1000–3000 ppm), and up to ~ 500 ppm C, both largely sequestrated in the solid Earth. This volatile content is equivalent to an ~ 2 (± 1) % contribution of carbonaceous chondrite (CI-CM) material to a dry proto-Earth, which is higher than the contribution of chondritic material advocated to account for the platinum group element budget of the mantle. Such a (relatively) high contribution of volatile-rich matter is consistent with the accretion of a few wet planetesimals during Earth accretion, as proposed by recent dynamical models.The abundance pattern of major volatile elements and of noble gases is also chondritic, with two notable exceptions. Nitrogen is depleted by one order of magnitude relative to water, carbon and most noble gases, which is consistent with either N retention in a mantle phase during magma generation, or trapping of N in the core. Xenon is also depleted by one order of magnitude, and enriched in heavy isotopes relative to chondritic or solar Xe (the so-called “xenon paradox”). This depletion and isotope fractionation might have taken place due to preferential ionization of xenon by UV light from the early Sun, either before Earth's formation on parent material, or during irradiation of the ancient atmosphere. The second possibility is consistent with a recent report of chondritic-like Xe in Archean sedimentary rocks that suggests that this process was still ongoing during the Archean eon (Pujol et al., 2011). If the depletion of Xe in the atmosphere was a long-term process that took place after the Earth-building events, then the amounts of atmospheric 129Xe and 131–136Xe, produced by the short-lived radioactivities of 129I (T1/2 = 16 Ma) and 244Pu (T1/2 = 82 Ma), respectively, need to be corrected for subsequent loss. Doing so, the I–Pu–Xe age of the Earth becomes ≤ 50 Ma after start of solar system formation, instead of ~ 120 Ma as computed with the present-day atmospheric Xe inventory.  相似文献   
96.
97.
The fluvial flux of carbon (C) from terrestrial to marine environments represents an important component of the global C‐cycle, which can transfer C from the atmosphere to sedimentary storage. Fluvial fluxes of C are also an essential resource for freshwater ecosystems, critical for habitat heterogeneity and function. As such it is crucial that we are able to quantify this flux accurately. However, at present there are a number of different techniques used to quantify concentrations of fluvial C, and these techniques vary in their accuracy. In this article, we compare particulate organic carbon (POC) measurements derived from two commonly‐used techniques; a simple combustion and loss‐on‐ignition (LOI) technique, and an oxidative–combustion and carbon dioxide (CO2) detection technique. The techniques were applied to water samples collected from 10 contrasting reference‐condition, temperate river ecosystems. The POC measurements derived from the LOI technique were up to 16 times higher (average four times higher), than those derived from the oxidative–combustion and CO2 detection technique. This difference was highly variable both across the different river ecosystems and within each river ecosystem over time, suggesting that there is no simple way of converting the mass measured by LOI to estimates of fluvial POC. It is suggested that the difference in POC measured by these two techniques is a consequence of: (1) the loss of inorganic carbon at LOI combustion temperatures of > 425 °C, (2) the potential during the LOI combustion stage to lose hygroscopic and intercrystalline water, not completely driven off by the drying stage at temperatures of < 150 °C, and (3) the variable C content of fluvial organic matter, meaning that the simple application of a fixed correction factor to values obtained from the LOI technique may not be appropriate. These findings suggest that oxidative–combustion and CO2 detection techniques are preferential for quantifying fluvial POC. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
98.
Mountain snow cover is an important source of water and essential for winter tourism in Alpine countries. However, large amounts of snow can lead to destructive avalanches, floods, traffic interruptions or even the collapse of buildings. We use annual maximum snow depth and snowfall data from 25 stations (between 200 and 2,500?m) collected during the last 80 winters (1930/31 to 2009/2010) to highlight temporal trends of annual maximum snow depth and 3-day snowfall sum. The generalized extreme value (GEV) distribution with time as a covariate is used to assess such trends. It allows us in particular to infer how return levels and return periods have been modified during the last 80?years. All the stations, even the highest one, show a decrease in extreme snow depth, which is mainly significant at low altitudes (below 800?m). A negative trend is also observed for extreme snowfalls at low and high altitudes but the pattern at mid-altitudes (between 800 and 1,500?m) is less clear. The decreasing trend of extreme snow depth and snowfall at low altitudes seems to be mainly caused by a reduction in the magnitude of the extremes rather than the scale (variability) of the extremes. This may be caused by the observed decrease in the snow/rain ratio due to increasing air temperatures. In contrast, the decreasing trend in extreme snow depth above 1,500?m is caused by a reduction in the scale (variability) of the extremes and not by a reduction in the magnitude of the extremes. However, the decreasing trends are significant for only about half of the stations and can only be seen as an indication that climate change may be already impacting extreme snow depth and extreme snowfall.  相似文献   
99.
In order to document the origin and speciation of nitrogen in mantle-derived rocks and minerals, the N and Ar contents and isotopic compositions were investigated for hydrous and anhydrous peridotite xenoliths from Ataq, Yemen, from Eifel, Germany, and from Massif Central, France. Nitrogen and Ar were extracted by stepwise combustion with a fine temperature resolution, followed by fusion in a platinum crucible. A large isotopic disequilibrium of up to 25.4‰ is observed within single peridotite xenoliths, with δ15N values as low as −17.3‰ in phlogopite whereas clinopyroxene and olivine show positive δ15N values. Identical Sr isotopic ratios of phlogopite, clinopyroxene and whole rock in this wehrlite sample are consistent with crystallization from a common reservoir, suggesting that the light N signature of phlogopite might be the result of isotopic fractionation during N uptake from the host magma. The nitrogen concentration is systematically high in phlogopite, (7.6-25.7 ppm), whereas that of bulk peridotite xenoliths is between 0.1 and 0.8 ppm. The high N content of phlogopite is at least partly due to host magma-mineral interaction, and may also suggest the occurrence of N as that substituted for K+ during mineral growth in mafic magmas. Such speciation is consistent with the fact that N and Rb contents correlate well for a set of samples from mantle regions that were affected by subduction-related metasomatism and magmatism. The N/Rb ratios of these samples are comparable with values estimated for subduction zone magmas, but are one order of magnitude lower than the N/Rb ratios characterizing subducting slabs. This difference suggests preferential release of N relative to alkalis in the forearc region. N/40Ar ratios of minerals from analyzed mantle xenoliths are much higher than those of vesicles in MORBs and OIBs, requiring either the occurrence of nitrogen speciation in the mantle more compatible than Ar, significant loss of fluid phase during entrainment, or long residence time of volatile elements in the mantle source(s) of fluids to increase drastically the 40Ar budget of the latter.  相似文献   
100.
Recent studies have demonstrated that sponge‐eating fishes alter the community of sponges on coral reefs across the Caribbean. Sponge species that lack chemical defenses but grow or reproduce faster than defended species are more abundant on reefs where sponge‐eating fishes have been removed by overfishing. Does predator‐removal have an effect on the distribution of sponges at smaller spatial scales? We conducted transect surveys of sponge species that are palatable to sponge predators in proximity to refuge organisms that are chemically or physically defended (fire coral, gorgonians, hard corals) on the heavily overfished reefs of Bocas del Toro, Panama, and a reef in the Florida Keys where sponge‐eating fishes are abundant. In Panama, palatable sponge species were not distributed in close association with refuge organisms, while in the Florida Keys, palatable sponge species were strongly associated with refuge organisms. The presence of fish predators alters the meter‐scale pattern of sponge distribution, and defense by association enhances biodiversity by allowing palatable sponges to persist on reefs where sponge‐eating fishes are abundant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号